12,181 research outputs found

    On the Swimming of \textit{Dictyostelium} amoebae

    Full text link
    Traditionally, the primary mode for locomotion of amoeboid cells was thought to be crawling on a substrate. Recently, it has been experimentally shown that \textit{Dictostelium} amoeba and neutrophils can also swim in a directed fashion. The mechanisms for amoeboid crawling and swimming were hypothesized to be similar. In this letter, we show that the shape changes generated by a crawling \textit{D. discoideum} cell are consistent with swimming.Comment: letter submitted to PNA

    Mobility and Saturation Velocity in Graphene on SiO2

    Full text link
    We examine mobility and saturation velocity in graphene on SiO2 above room temperature (300-500 K) and at high fields (~1 V/um). Data are analyzed with practical models including gated carriers, thermal generation, "puddle" charge, and Joule heating. Both mobility and saturation velocity decrease with rising temperature above 300 K, and with rising carrier density above 2x10^12 cm^-2. Saturation velocity is >3x10^7 cm/s at low carrier density, and remains greater than in Si up to 1.2x10^13 cm^-2. Transport appears primarily limited by the SiO2 substrate, but results suggest intrinsic graphene saturation velocity could be more than twice that observed here

    Axinos as Dark Matter

    Get PDF
    Supersymmetric extensions of the Standard Model that incorporate the axion solution to the strong CP problem necessarily contain also the axino, the fermionic partner of the axion. In contrast to the neutralino and the gravitino, the axino mass is generically not of the order of the supersymmetry-breaking scale and can be much smaller. The axino is therefore an intriguing candidate for a stable superpartner. In a previous Letter [1] it was shown that axinos are a natural candidate for cold dark matter in the Universe when they are generated non-thermally through out-of-equilibrium neutralino decays. Here, we extend the study of non-thermal production and include a competing thermal production mechanism through scatterings and decays of particles in the plasma. We identify axino masses in the range of tens of MeV to several GeV (depending on the scenario) as corresponding to cold axino relics if the reheating temperature \treh is less than about 5\times10^4\gev. At higher \treh and lower mass, axinos could constitute warm dark matter. In the scenario with axinos as relics, the gravitino problem finds a natural solution. The lightest superpartner of the Standard Model spectrum remains effectively stable in high-energy detectors but may be either neutral or charged. The usual highly restrictive constraint \abundchi\lsim1 on the relic abundance of the lightest neutralino becomes void.Comment: 38 pages, a version to be published at JHE

    Surplus Angle and Sign-flipped Coulomb Force in Projectable Horava-Lifshitz Gravity

    Full text link
    We obtain the static spherically symmetric vacuum solutions of Horava-Lifshitz gravity theory, imposing the detailed balance condition only in the UV limit. We find the solutions in two different coordinate systems, the Painlev\'e-Gullstrand coordinates and the Poincare coordinates, to examine the consequences of imposing the projectability condition. The solutions in two coordinate systems are distinct due to the non-relativistic nature of the HL gravity. In the Painleve-Gullstrand coordinates complying with the projectability condition, the solution involves an additional integration constant which yields surplus angle and implies attractive Coulomb force between same charges.Comment: 13 page

    Dilaton Stabilization and Inflation in the D-brane World

    Full text link
    We study the dilaton stabilization in the D-brane world in which a D-brane constitutes our universe. The dilaton can be stabilized due to the interplay between the D-brane tension and the negative scalar curvature of extra dimensions. Cosmic evolution of the dilaton is investigated with the obtained dilaton potential and it is found that inflation can be realized before the settlement of the dilaton.Comment: 10 pages, abstract correcte

    Neutron and muon-induced background studies for the AMoRE double-beta decay experiment

    Full text link
    AMoRE (Advanced Mo-based Rare process Experiment) is an experiment to search a neutrinoless double-beta decay of 100^{100}Mo in molybdate crystals. The neutron and muon-induced backgrounds are crucial to obtain the zero-background level (<10−510^{-5} counts/(keV⋅\cdotkg⋅\cdotyr)) for the AMoRE-II experiment, which is the second phase of the AMoRE project, planned to run at YEMI underground laboratory. To evaluate the effects of neutron and muon-induced backgrounds, we performed Geant4 Monte Carlo simulations and studied a shielding strategy for the AMORE-II experiment. Neutron-induced backgrounds were also included in the study. In this paper, we estimated the background level in the presence of possible shielding structures, which meet the background requirement for the AMoRE-II experiment

    Standard Error of Empirical Bayes Estimate in NONMEM® VI.

    Get PDF
    The pharmacokinetics/pharmacodynamics analysis software NONMEM® output provides model parameter estimates and associated standard errors. However, the standard error of empirical Bayes estimates of inter-subject variability is not available. A simple and direct method for estimating standard error of the empirical Bayes estimates of inter-subject variability using the NONMEM® VI internal matrix POSTV is developed and applied to several pharmacokinetic models using intensively or sparsely sampled data for demonstration and to evaluate performance. The computed standard error is in general similar to the results from other post-processing methods and the degree of difference, if any, depends on the employed estimation options
    • …
    corecore